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82109 Bratislava, Slovakia; stefan.koco@nppc.sk

3 Department of Geography and Applied Geoinformatics, Faculty of Human and Natural Sciences,
Prešov University, Ul. 17. Novembra 1, 08001 Prešov, Slovakia

* Correspondence: radoslav.bujnovsky@vuvh.sk

Abstract: The aim of the study was to detect nitrate concentrations in leachate within agricultural
land in three districts of Slovakia, namely Nitra, Nové Zámky and Dunajská Streda as well as in
the DEEPWATER-CE pilot area. Using the average values of leachable nitrogen in the period 2015–
2018 and the long-term amount of percolated water, the nitrate concentration values in leachate
were detected. In most defined groundwater monitoring sites, the current nitrogen surplus and
corresponding nitrate concentration in leachate create preconditions for the gradual reduction of
groundwater nitrate pollution. However, in some groundwater monitoring places, especially in
the Nitra district, the nitrate concentration in leachate exceeds 50 mg L−1, which is completely
unacceptable from the point of groundwater pollution. In detected hot-spots, it is necessary to reduce
the nitrogen surplus up to 15 kg ha−1 on average per year. In this sense, the nitrate concentration in
leachate is an important indicator for the revision of existing measures in agriculture.

Keywords: Nitrates Directive; groundwater pollution; leachable nitrogen; nitrate concentration

1. Introduction

Groundwater pollution by nitrates remains a persistent environmental problem re-
quiring more attention. The importance of this topic is confirmed by many findings at
both national and international levels [1–5]. Although considerable effort has been made
to reduce nitrate concentration in water, especially since the enactment of the Nitrates
Directive (91/676/EEC), the expected effect in groundwater has not been reached [2,6–8].
In addition, reaching the limit established by the Nitrates Directive can take decades in
many locations owing to low rates of degradation or long lag times in the transport of
water and solutes in the vadose and saturated zones [9–13].

Nevertheless, as indicated by the EU Biodiversity Strategy to 2030 and the Farm to Fork
Strategy, the European Commission continues to promote further reduction of fertilizer
application as well as the reduction of unproductive nutrient losses into the water and
air. Therefore, the issue of reduction of above-limit nitrate concentration in groundwater
remains highly pertinent from political, scientific and best-practice viewpoints.

Although the excessive load of nitrogen from agricultural practices is still considered
a primary reason for water pollution by nitrates, current information on nitrogen surpluses
and nitrate concentration in groundwater shows that there is not always a direct or unam-
biguous relationship between these two indicators [14–16]. Clearly, the nitrogen surplus,
the qualitative risk of groundwater pollution by nitrogen [17–21] and the leaching rates of
nitrogen into the waters [15,22–25] can serve as the basis for relevant hot-spot definition.
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However, the consideration of hydrological or hydro-geochemical properties of a specific
site [5,7,9,10,26,27] is essential in assessing the impact of leached nitrogen on overall ni-
trate concentration in groundwater and on the sufficiency or inadequacy of the measures
taken. Consequently, the targeted addressing of the problem in hot-spots where nitrate
concentration in seepage water exceed the Nitrates Directive limit is essential [1,28–31].
This is particularly important in aquifers, where the capacity to reduce nitrates is low or
depleted and dilution represents the only mechanism for decreasing nitrate concentration
in groundwater [26].

Until the whole country is included in the Nitrates Directive vulnerable zones, these
could serve as priority areas for the implementation of more targeted and consistent mea-
sures. As is being documented by a significant number of publications [27,29–34], even
within defined vulnerable zones, the efficiency of adopted measures is significantly influ-
enced both by their allocation and the character of soil-climatic and hydrological conditions.

As was already mentioned, the diffuse pollution of groundwater by nitrates, in which
agriculture plays a significant role, represents an issue to be addressed systematically. Any
consolidation of existing measures or the adoption of new ones should be enforced on
the basis of objective comprehensive information [5,9–13,35,36] and not only as a result of
longing public expectations and force majeure occurrence [12]. Otherwise, the much-needed
cooperation between the water management sector and agriculture remains suboptimal.

Therefore, the study, based on the examples of selected districts, aims to detect current
nitrate concentration in leachate from utilized agricultural land, which provides immediate
information to improve of efficiency of relevant measures in agriculture. The relatively
simple procedure developed for this purpose consists of several consecutive steps: (1) the
determination of nitrogen surplus within utilized agricultural land, (2) the determination
of the amount of leachate, (3) the determination of leachable nitrogen and its conversion
to nitrates, (4) the delineation of areas where nitrate concentration in leachate exceeds
40 mg L−1, and (5) the quantification of nitrogen surplus to be reduced.

2. Materials and Methods
2.1. Delineation of the Evaluated Area

In Slovakia, the Nitrates Directive vulnerable zones (VZs) represent the agricultural
land in relevant municipal cadasters, and their list is revised every four years. With respect
to the availability of input data for the nitrogen balance calculation, the local administrative
units LAU-1 (districts) were applied.

Evaluation was focused on the two districts where groundwater pollution by nitrates
from agricultural land is the most extensive and requires increased attention. These are
the Nitra (NR) and Nové Zámky (NZ) districts, located in the western part of Slovakia
(Figure 1). The choice was primarily based on the highest proportion of the groundwater
monitoring sites with nitrate concentration equal to or over 50 mg L−1 as well as the
monitoring sites with elevated average nitrates concentration in range 40 to 49.99 mg L−1

with an increasing trend in the period 2016–2019. The share of preselected monitoring sites
with defined nitrate concentrations was 52.2% (NR) and 49.2% (NZ)—see Table 1.

Additionally, the district of Dunajská Streda (DS) was included, although the share of
monitoring sites with nitrate concentrations equal to or over 40 mg L−1 was more than five
times lower (9.0%). The reason for its inclusion was that a large part of this district and its
utilized agricultural land (UAL) belongs to the most important protected area of natural
water accumulation (PANWA) in Slovakia—Žitný ostrov—see Figure 1. Therefore, the
monitoring sites with nitrate concentrations 25–39.99 mg L−1 with an increasing trend were
also included (see Figure 2, Table 1). In this district, within the DEEPWATER-CE project, one
of the pilot areas was selected in order to investigate possibilities of groundwater recharge
(latter pilot area, PA)—see Figure 2. Therefore, this territory was separately evaluated.
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Table 1. Relative share of groundwater monitoring sites (%) with defined nitrate concentrations
(mg L−1) of the total within UAL of selected districts and pilot area.

District/Area
Relative Share of GW Monitoring Sites (%)

25–39.99 (mg L−1) 40–49.99 (mg L−1) 50 and More (mg L−1)
(Increasing Trend) (Increasing Trend)

Nitra 0.0 2.2 50.0

Nové Zámky 0.0 6.6 42.6

Dunajská Streda 0.8 0.8 8.2

Pilot area 0.0 0.0 0.0
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It should be recalled that the number of groundwater monitoring sites and the cor-
responding average values of nitrates in groundwater are based on the most recent data
of the 2016–2019 period specified in the current report on the implementation of Council
Directive 91/676/EEC in Slovakia [6].

Regarding agricultural land use, arable land, which includes kitchen gardens, is the
clearly dominant type—over 97% of UAL. This modality is typical of intensively used
agricultural areas in Slovakia while permanent cultures (orchards and vineyards) and
permanent grasslands generally represent very small shares (see Table 2). The distribution
of soil types classified by World Reference Base for Soil Resources—WRB (2015) is shown
in Table 3.

Table 2. Relative share of arable land, permanent grasslands and permanent cultures within UAL of
selected districts/areas of Slovakia.

District/Area
Utilized Agricultural

Land (Thou. ha)

Relative Share (%)

Arable Land and
Kitchen Gardens Permanent Cultures Permanent Grasslands

Nitra 60.32 97.62 1.72 0.66

Nové Zámky 107.90 97.06 1.81 1.13

Dunajská Streda 75.04 98.58 0.72 0.70

Pilot area 16.69 98.70 0.32 0.98

Table 3. Relative share of soil types within UAL of selected districts/areas of Slovakia.

Soil Type District/Area
Nitra Nové Zámky Dunajská Streda Pilot Area

Regosol 27.33 10.13 0.03 0.05
Fluvisol 2.60 1.85 16.64 5.18

Gleyic Fluvisol 3.77 1.81 1.07 0.11
Fluvic Gleyic Chernozem 4.73 13.87 20.30 25.58

Chernic Gleysol 1.50 6.49 6.49 5.88
Rendzic Skeletic Leptosol 0.10 0.05

Lithic Leptosol 0.01
Haplic Chernozem 6.13 26.52 53.96 59.70

Luvic Phaeozem 20.65 30.24
Haplic Luvisol 22.20 6.90
Albic Luvisol 2.61 0.69

Stagnic Luvisol 6.35 0.79
Albi Stagnic Fragic Luvisol 0.99 0.01

Haplic Cambisol 0.67 0.06
Stagnic Cambisol 0.11
Fragic Planosol 0.07 0.02

Gleysol 0.09 0.02
Histosol 0.11 1.40 3.51

Haplic Solonchak 0.02 0.36
Anthrosol 0.05 0.09 0.12

2.2. Calculation of Nitrogen Balance and Nitrates Concentration in Leachate

Nitrogen balance represents the first step of estimation of nitrogen losses to groundwa-
ter. Gross nitrogen balance on UAL was calculated by Eurostat & OECD methodology [37].
The main input data at district level were received from the National Statistical Office (num-
ber of farm animal categories, harvested area and crop yields, as well as acreage of utilized
agricultural land) and Central Control and Testing Agricultural Institute (consumption of
nitrogen fertilizers). Atmospheric nitrogen deposition was derived from EMEP data for the
years 2015–2018 (available at: EMEP MSC-W HOME).
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The amount of nitrogen leachable to groundwater was obtained by subtracting the
gaseous nitrogen losses (during animal housing, manure storage and after its application on
the land [38]), and gaseous N loses via the biological denitrification in the soil as described
by Kunkel et al. [26] or originally by Kunkel and Wendland [39].

Amount of nitrogen losses via denitrification in soil rooting zone was calculated by
following equation:

dNstsoil
dtsoil

+ Dmax·
Nstsoil

k + Nstsoil
= 0 (1)

where Nstsoil : remaining nitrogen surplus in soil after residence time tsoil; tsoil : residence
time of percolation water in soil root zone (years); Dmax: maximum annual denitrification
rate in soil (kg N ha−1 year−1); k: Michaelis constant (kg N ha−1 year−1); and 0: displaceable
nitrogen surplus in soil (kg N ha−1).

Using the soil database operated by the National Agricultural and Food Centre—Soil
Science and Conservation Research institute in Bratislava, the maximum annual denitrifica-
tion rate was derived from grouping of soil types (see Table 3) to four out of five groups [40].
The rates 10, 20, 40 and 60 kg N ha−1 year−1, corresponding to very low, low, medium
and good soil denitrification potential were corrected by residence time of percolation
water through the soil, what is given by ratio of effective field capacity of the soil and
leachate rate:

tsoil =
FCe f f

Qp
(2)

where tsoil : residence time of percolation in soil root zone (years); FCe f f : effective field
capacity in the soil column (mm); and Qp: the mean long-term leachate rate (mm year−1).

The amount of the mean long-term average values of leachate rate was calculated as
the difference between precipitation and evapotranspiration reduced by surface runoff by
formula, described by Kunkel and Wendland [39]:

Qp = P − ETa − Qo (3)

where Qp: the mean long-term leachate rate (mm year−1); P: the long-term average of
annual rainfall (mm year−1); ETa: real evapotranspiration calculated from the long-term
annual rainfall and potential evapotranspiration (mm year−1); and Qo: surface runoff
(mm year−1).

The average long-term data on precipitation and potential evapotranspiration in
the period 1986–2015 distinguishing between winter and summer half-year period were
obtained from the Slovak Hydrometeorological Institute. This reference period was ap-
plied to eliminate inter-annual variability and the effect of individual dry or wet years,
respectively [41].

The surface runoff was calculated according to formula, described by Kunkel and
Wendland [39]:

Qo = Qp·(P − 500)1.65 (4)

where Qo: surface runoff (mm year−1); Qp: the mean long-term leachate rate (mm year−1);
and P: the long-term average of annual rainfall (mm year−1).

The nitrogen concentration in leachate was calculated on the base of leachable nitrogen
converted into nitrates and the amount of percolation water:

CNO−
3
=

443 · Nstsoil
Qp

(5)

where CNO−
3

: nitrate concentration in leachate (mg L−1); 443: factor to convert nitrogen

(mg L−1) to nitrate (mg L−1); Nstsoil : nitrogen surplus after denitrification considered as
leachable nitrogen (kg ha−1); and Qp: the mean long-term leachate rate (mm year−1).

Figure 3 summarizes the above procedure.
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In line with the three-step concept “critical limits—critical loses—critical inputs” [31],
the need to reduce the nitrogen excess was based on the backward recalculation of leachate
nitrates above 40 mg L−1 to nitrogen. This concentration, which is more stringent when
compared to the value 50 mg L−1 in leachate used by other authors [30,31,33,39], should
contribute to a gradual decrease of nitrate concentration in groundwater.

3. Results

The average values of gross and net nitrogen balance on UAL in individual districts
and the pilot area are illustrated at Table 4.
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Table 4. Average values of nitrogen surplus on district/area level in period 2015–2018 (kg N ha−1

of UAL).

District/Area Gross Balance Net Balance

Nitra 43.2 25.5

Nové Zámky 28.3 13.6

Dunajská Streda 44.2 23.5

Pilot area 44.7 21.5

While gross nitrogen surplus is just initial information on possible N losses into water,
the net nitrogen surplus (according to Eurostat & OECD methodology [37] labelled as
land budget) represents the indicator of potential N loses to groundwater. To classify the
gross nitrogen balance, in Slovakia the indicative OECD limit value 50 kg ha−1 was set as
middle value of medium N surplus category (40.1–60.0 kg ha−1). In the case of net nitrogen
balance, the half values for individual categories could be provisionally used. In terms of
this classification, the gross and net balance values as such (see Table 4) can be assessed
quite favorably.

The calculation of leachable nitrogen is the next important step to determine nitrate
concentration in leachate. The maximum annual denitrification rate in UAL is shown in
Figure 4.
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Figure 4. Maximum annual denitrification rate within UAL of selected districts.

As shown in Figure 4, UAL in selected districts shows mainly very low and low condi-
tions for denitrification with shares over 75% (NZ = 75.5%, DS = 76.3%, and NR = 87.5%).
In the pilot area, the conditions are almost equal to DS district (73.2%).

The detected share of UAL in selected districts with residence time of percolation
water over one year (see Figure 5) is more than 75%. In the pilot area, it accounts for 75%.
From the soil denitrification aspect, it can be assessed as favorable. It can no longer be
claimed about the share of UAL with a residence time of percolation water up to 0.25 years,
which is considerable especially in the district of Dunajská Streda (7.6%).
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The amount of leachable nitrogen after losses via denitrification in the soil rooting
zone is illustrated in Figure 6. As it can be seen, the lowest values are detected in district
Dunajská Streda, followed by the Nové Zámky and Nitra districts. The share of UAL
with displaceable nitrogen below 10 kg ha−1 decreases in the order NZ (94.1%) > DS
(80.5%) > NR (67.7%). In the pilot area, this share is little bit higher than in the whole DS
district (85.3%).
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The amount of percolation water within UAL of selected districts (see Figure 7) corre-
sponds to typical annual values up to 200 mm, which occur at precipitation totals around
600 mm in areas with warm climate.
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Figure 7. Calculated average amount of percolation water.

The mean long-term nitrate concentrations in leachate show some differences (Figure 8).
The share of UAL where nitrate concentrations are ≥40 mg L−1 decreases in the order
NR (25.9%) > DS (12.2%) > NZ (2.5%). In the pilot area, it is slightly higher than in the
DS district (13.3%). In corresponding areas, a targeted reduction in the nitrogen balance
surplus should be considered in order to ensure a gradual decrease of nitrate concentration
in groundwater or to secure the current good status where detected.
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Finally, the comparison of nitrate concentration in leachate with their values in ground-
water monitoring sites are shown in Table 5. The average nitrate concentration in leachate
might contribute to the gradual decrease of concentration of nitrates in most groundwa-
ter monitoring sites. However, in some groundwater monitoring sites, especially in the
Nitra district, the nitrates concentration in leachate goes beyond 50 mg L−1 what is com-
pletely unacceptable from the point of groundwater pollution. Currently, the concentration
range of nitrates in groundwater monitoring sites within the pilot area are out of the
pre-defined range.
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Table 5. Number of groundwater monitoring sites corresponding to combinations of average annual
nitrate concentration in seepage water and groundwater.

District

Nitrates Concentration (mg L−1)

Percolation Water
Groundwater

25–39.99 40–49.99 ≥50

Nitra

<25 1 1 14
25–39.99 - - 1
40–49.99 - - -
≥50 - - 8

Nové Zámky

<25 2 3 24
25–39.99 - 1 2
40–49.99 - - -
≥50 - - -

Dunajská Streda

<25 - 1 8
25–39.99 - - -
40–49.99 - - 1
≥50 1 - 1

The need to reduce the balance surplus of nitrogen to subsequently ensure the average
nitrates concentration in seepage water at 40 mg L−1 is illustrated in Table 6.

Table 6. The acreage of UAL which has to reduce the nitrogen surplus to ensure an average nitrate
concentration in percolation water of 40 mg L−1.

District/Area
N Surplus UAL Acreage

(kg ha−1) (ha)

Nitra
0.1–5.0 1148

5.1–10.0 17,234
10.1–15.0 251

Nové Zámky
0.1–5.0 4

5.1–10.0 0
10.1–15.0 0

Dunajská Streda
0.1–5.0 2587

5.1–10.0 10,387
10.1–15.0 0

Pilot area
0.1–5.0 1389

5.1–10.0 737
10.1–15.0

As Table 6 shows, the average reduction in annual N surplus to ensure a nitrate
concentration of 40 mg L−1 in leachate does not exceed 15 kg N ha−1 in detected hot-spot
areas which are shown in Figure 8. The largest share of UAL acreage in hot-spot areas
falls within the reduction of nitrogen surplus only up to 10 kg N ha−1, especially for the
districts of Nitra and Dunajská Streda. On the other hand, no need to reduce the nitrogen
surplus in the Nové Zámky district is anticipated at present. The situation in the pilot
area is more favorable compared to the Dunajská Streda district. In the corresponding
hot-spot area, where it is necessary to reduce the excess of nitrogen, the category 0.1 to
5 kg N ha−1 prevails.

4. Discussion

Water monitoring is an essential tool to address the current status of groundwater
pollution and to identify how far it is from reaching the desired environmental level [42],
but on its own it cannot to be used to predict the further development of water quality
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and the effect of the measures adopted in agriculture [43–45]. Likewise, the combination of
water monitoring results with general information on recent land use patterns, fertilizer
consumption, livestock density, etc. does not significantly improve comprehension in this
regard, although it may seem beneficial when no information is available.

The modelled nitrate concentration in leachate serves as a predictive approximation of
the adopted measures efficiency and as the base for their possible reassessment [15,44,46],
while the spatial information concerning the net nitrogen balance represents the starting
point for that. Moreover, as indicated by several authors [15,44], identical N balance
surpluses or even leachable nitrogen may lead to completely different nitrate concentration
in leachate as a consequence of different denitrification rates and infiltration. As a result,
the values of nitrogen balance cannot provide any objective response to groundwater
nitrate pollution from agriculture in the current period even when surveyed at the level of
individual plots, nor can they serve for monitoring the efficiency of mitigation measures as
stated by Klages et al. [14].

Although in Slovakia the values of the gross nitrogen balance at country level are
clearly lower than in the countries with more intensive agriculture, and modelled nitrogen
losses by leaching and runoff [24,25,31] indicate a quite good situation, unsatisfactory high
levels of nitrate concentration in groundwater [6] compel us to address this issue in relevant
areas as effectively as possible.

The primary step for decreasing nitrates concentration in groundwater below 50 mg L−1

directly corresponds with the reduction of the amount of potentially leachable nitrogen in
the soil and thus net nitrogen balance [1,15,44,46]. Even though, under certain conditions,
the groundwater environment enables a further decrease of nitrates concentration [47], the
capacity of this mechanism is exhaustible [46], it being associated with negative side-effects
such as the release of arsenic, nickel and rising sulphate concentration. For that reason,
groundwater dilution by less polluted leachate and regulation of nitrogen surplus remains
the most accessible way to reduce the above-limit values of nitrates in groundwater as also
stated by Mas-Pla and Menció [32].

Recharge rates significantly influence both the concentration of nitrates in leachate
and the rate of groundwater concentration change. This is especially relevant in NR, NZ
and DS because the annual amount of leachate is often less than 100 mm (see Figure 6), and
thus the dilution effect is limited. On the contrary, as stated by Kumar et al. [48], lower
rates of leachate, which are typical for eastern European countries, can promote the process
of soil denitrification due to longer residence time of percolation water in the soil.

The definition of hot-spot regions with nitrate concentration in groundwater over
50 mg L−1 or over 37.5 mg L−1 with increasing trend is the primary base for deriving
maximum acceptable nitrogen balance surplus [15,41]. In this case the second limit value is
derived from the Directive 2006/118/EC on the protection of groundwater against pollution
and deterioration (Article 5, Annex IV). A similar approach was also used in this study with
the proviso that Nitrates Directive limits were applied (nitrate concentration over 50 mg L−1,
nitrate concentration over 39.99 mg L−1 with increasing trend and nitrate concentration
over 25 mg L−1 with increasing trend) (see Figure 2). Currently, the concentration limit
40 mg NO3 L−1 in leachate in selected districts can be considered an acceptable result from
the agricultural practice. As can be seen from the Table 5, in most cases nitrate concentration
in leachate contributes to gradual dilution in groundwater, especially within the range
over 50 mg L−1. However, in some groundwater monitoring sites, mainly in Nitra district,
indicate that the nitrate concentration in leachate requires the review of the measures to
reduce leachable nitrogen. Defined hot-spot areas (see Figure 8) should effectively serve as
a basis in this regard.

In comparison to foreign studies [1,15,31], the average rates to reduce nitrogen surplus
to ensure nitrate concentration of 40 mg L−1 in leachate are lower. But it should be
recalled that in these studies single year nitrogen balance was applied instead of the
multiannual average [22,33,41,46], thus the final results may be subject to significant inter-
annual variability, which Kühling et al. [44] have also noticed. In any case, the lower limit
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of nitrates concentration in leachate (40 mg L−1) can be considered as a certain guarantee
for achieving the necessary effectiveness of measures in agriculture.

It is clear that certain decreases of N input in fertilizers or the reduction of intensity
of crop cultivation [22,26,43], formulated in the EU Biodiversity Strategy to 2030 and the
Farm to Fork Strategy, as well as nitrogen capture by winter crops or catch crops in hot-spot
areas [15,17,22,26,28,43], can help to reduce groundwater nitrate pollution. As for Slovak
conditions, the higher nitrogen surplus is recorded in the lowlands as the consequence of
cultivation of cash crops and the summer droughts [29]. The drought in the growing season
affects not only the nitrogen surplus as Bowles et al. indicate [28], but also the cultivation
of winter catch-crops in warm lowland areas, which also applies to the NR, NZ and DS
districts. The problem is to reach the stand completeness of winter intercrops, which are
sown in summer, also confirmed by Kühling et al. [44]. The expansion of winter crops,
in turn, faces the problem of dominant share of winter wheat stands which have lower
capacity to uptake nitrogen in autumn compared to rapeseed or rye.

The information presented here significantly improves existing descriptive and qual-
itative approaches both in the review of vulnerable areas as well as in the assessment of
the adequacy of existing measures. It is also possible to partially supplement the mon-
itoring network with other sites that better reflect diffuse groundwater pollution. Even
though the precautionary principle is being applied in Slovakia to classify agricultural land
into vulnerable areas, information on nitrate concentration in leachate can contribute to a
better-informed application of the precautionary principle in the study area.

However, it should be taken into consideration that all relevant information is influ-
enced by the accuracy/scale of the input data [41] rather than the grid in which the results
are displayed. Although the soil maps and data in Slovakia are in very good scale (1:10,000),
this does not apply for relevant climatic data and the input and outputs for nitrogen balance
calculation being calculated on districts (LAU-1) level.

Currently, the disaggregation of nitrogen balance numbers according to the type of
agricultural land and intensity represents the most suitable approach to deal with the
situation. Therefore, the values of gross and net nitrogen balance in specific districts were
redistributed according to the type of agricultural land (especially arable land, permanent
grassland and permanent cultures such as orchards and vineyards) and the intensity of
their use, which can be derived from some measures of the second pillar of the current
Rural development program (e.g., ecological agriculture). In accordance with Kunkel and
Wendland [39] and Knoll et al. [47], who indicate the necessity to take into account the type
of agricultural land in the area of interest, the highest balance surpluses of nitrogen occur on
intensively used arable land contrary to the lowest N surpluses on permanent grasslands,
which in Slovakia are often used extensively. Direct calculation of nitrogen balance at
LAU-2 or municipal cadasters level or even at field level can bring improvement provided
that it covers all UAL and sufficient quality/correct data from farmers are ensured.

Although nitrate concentration in leachate is a terminative indicator to detect hot-spots,
as stated in several works [11,12], the time lag which also corresponds to the thickness of
unsaturated zone or depth of groundwater should be also taken into account at revision of
agricultural measures.

5. Conclusions

Nitrate concentration in leachate within the agricultural land represent an important
indicator for determining the current hot-spot areas in terms of groundwater nitrate pol-
lution. In most cases nitrate concentration in leachate contributes to gradual dilution in
groundwater, especially in the range over 50 mg L−1. The target value of this indicator,
40 mg NO3 L−1, can serve as the baseline for revision of the measures taken by farmers in
selected districts of Slovakia. In the identified hot-spots, the average reduction of average
annual N surplus to ensure a nitrate concentration of 40 mg L−1 in leachate does not exceed
15 kg ha−1.
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